Native trappers defend Canada forests from logging

source

A sign erected in 2010 in the middle of a road in Canada's Broadback Valley by trappers from the James Bay Cree Indian nation and Greenpeace activists, warns loggers on March 12, 2014 "the road of destruction ends here" Read more at: http://phys.org/news/2014-03-native-trappers-defend-canada-forests.html#jCp

A sign erected in 2010 in the middle of a road in Canada’s Broadback Valley by trappers from the James Bay Cree Indian nation and Greenpeace activists, warns loggers on March 12, 2014 “the road of destruction ends here”
Read more at: http://phys.org/news/2014-03-native-trappers-defend-canada-forests.html#jCp

Beyond a clear-cut in Quebec’s far north — marked by a sign that reads “the road of destruction ends here” — aboriginal Canadians are fighting for an ancient forest and their traditional hunting rights.

Canada’s boreal forest is the largest intact forest in the world, comprising one-third of the forest circling the North Pole above the 50th parallel.

In this remote part of Quebec province, just south of the frozen Broadback River, the coniferous forest is home to hundreds of wildlife species including the endangered woodland caribou.

For centuries, Cree tribesmen have also lived and hunted in these woods.

They lived without hindrance until the 1970s, when logging and the construction of hydro-electric dams in the James Bay region started to encroach on them.

In 2010, a dozen Cree tallymen — tasked with supervising trapline activities — decided to take a stand on behalf of 16,000 Cree who live in this area, and blocked logging roads in protest.

They say logging offers few benefits to indigenous people, while damaging the environment.

The sign on a dirt road six kilometers (four miles) south of the river represents their last stand.

They have demanded that some 13,000 square kilometers (5,020 square miles) of wilderness north of the marker be set aside for a nature preserve.

Forestry companies had agreed to a logging moratorium but that expired last June, and the Grand Council of the Crees has yet to reach an accord with the Quebec government.

- Election issue -

The future of the forest is an issue in the province’s general election.

The Liberal Party, which is leading in the polls, favors massive exploitation of untapped natural resources in Quebec’s far north.

Liberal leader Philippe Couillard said on the campaign trail that “thousands of jobs, millions of cubic meters of wood and (several) pulp mills are at stake.”

The Liberals’ main rival, the Parti Quebecois, has also pledged to significantly boost logging in the province over the coming years.

“At least they haven’t started handing out exploitation permits yet,” said Steven Blacksmith, the natural resources administrator for the Cree reserve of Waswanipi.

According to the latest government figures, Quebec’s forestry industry is the largest in the country, employing close to 70,000 people.

The industry accounts for 2.7 percent of the province’s gross domestic product, exporting billions of dollars worth of lumber, pulp and paper each year.

But it has struggled with every up and down of the global economy.

- Cree culture at stake -

Standing in the middle of a logged section of his former trapline, Don Saganash points in every direction and laments: “We can’t hunt here; the animals don’t have any shelter anymore.”

“We can’t even trap marten anymore,” echoes his cousin Malcolm. “This winter I caught none, whereas before I would catch 100.”

Hunting is not just for sustenance or sport but at the heart of Cree culture, and has been recognized in Canadian law as a right for natives nationwide.

But those rights are being tested by lumberjacks pushing further and further north, Don says.

From time to time, forestry industry representatives stop in at Don, Malcolm and another cousin Philippe’s hunting camp deep in the woods to announce plans for logging nearby, and offer the trio compensation.

“I say no, but they still move forward,” says Malcolm.

Philippe said there were now three forestry companies on his land — traditional Cree territory.

“They never ask (for permission). They don’t care about what we think,” he says.

Winters here are growing shorter, and caribou are becoming scarcer due to forest clear-cutting and more and more predatory wolves finding their way north along logging roads.

Cree fear they are witnessing the twilight of their ancestors’ way of life.

Huddled around a wood-burning stove to cook moose meat in the Cree village of Waswanipi, about 200 kilometers (120 miles) south of the Saganash cousins’ log cabin, Cree elders are unanimous.

“The water, the fish, the meat (in the region) doesn’t taste the same anymore,” says Alice Happyjack.

“I feel sad.”

With heavy eyelids, Joseph Neeposh explains in a Cree drawl that he has lived all of his life in the forest and that Cree have a “spiritual connection” to the land.

“Destroying the forest is destroying us.”

Enhanced by Zemanta

Inadequate training and supervision cause QNS&L Collision

Source

r13q0001-photo-03

GATINEAU, QC, March 31, 2014 /CNW/ – Highlighting an issue on its Watchlist, the Transportation Safety Board of Canada (TSB) released today its railway investigation report (R13Q0001) into the Quebec North Shore and Labrador Railway (QNS&L) collision and derailment between a freight train and stationary iron ore train that occurred near Mai,Quebec, in January 2013. The investigation identified the issue of not following signal indications as a contributory factor.

On the evening of 11 January 2013, a QNS&L freight train departed the yard at Sept-Îles, Quebec, travelling north toSchefferville, Quebec. On its way, it collided with the rear end of a stationary QNS&L iron ore train near Mai. The first locomotive of the freight train was completely destroyed and the second locomotive derailed. Eight cars on the iron ore train also derailed. The freight train crew members sustained minor injuries. Approximately 40 feet of track was damaged.

The investigation determined that the freight train passed a signal displaying a restricting indication, but did not reduce its 40 mph speed. Hence, it could not stop in time despite an emergency brake application. It was also determined that the locomotive engineer trainee who was at the controls of the train had not yet received Canadian Rail Operating Rules (CROR) training and, as a result, did not have a complete grasp of measures required under a restricting indication.

On 16 January 2013, the TSB issued Rail Safety Advisory 02/13 to Transport Canada regarding the importance of comprehensive training for safe train operations. On 5 March 2013, Transport Canada indicated that its Quebec Regional Office conducted an in-depth review of the training and supervision of QNS&L employees.

Watch the video on Following Railway Signal Indications.

Collision and derailment
Quebec North Shore and Labrador Railway freight
train FCN 05 and iron ore train BNL 005 at
Mile 124.2, Wacouna Subdivision, near Mai, Quebec

Summary

On 11 January 2013, at approximately 0018, Eastern Standard Time, freight train FCN 05 collided with the rear end of iron ore train BNL 005 at Mile 124.2 on the Quebec North Shore and Labrador Railway’s Wacouna Subdivision, near Mai, Quebec. The first locomotive on train FCN 05 was completely destroyed and the second locomotive derailed. Eight cars on train BNL 005 derailed. The members of the FCN 05 train crew sustained minor injuries. Approximately 40 feet of track was damaged.

Ce rapport est également disponible en français.

Factual information

The accident

On 10 January 2013, at approximately 2000Footnote1, Quebec North Shore and Labrador Railway (QNS&L) freight train FCN-05 (train FCN) departed the yard at Sept-Îles, Quebec, Mile 8.9 on the Wacouna Subdivision, travelling northward to Schefferville, Quebec (Figure 1). The train consisted of 3 locomotives and 55 loaded cars. It was about 2190 feet in length and weighed approximately 3950 tons.

Figure 1. Accident site (Source: Railway Association of Canada, Canadian Railway Atlas)

Accident site (Source: Railway Association of Canada, Canadian Railway Atlas)

Click image to enlarge.

Train FCN was operated by a locomotive engineer trainee, in the presence of an engineer with over 20 years of experience who was qualified for the position. Both were familiar with the territory and met fitness and rest standards. They had completed their previous assignment more than 72 hours before their shift and had slept well the night before the accident. The locomotive engineer trainee was undergoing practical training and had not yet received any formal training on the Canadian Railway Operating Rules (CROR).

Throughout the evening, train FCN was following QNS&L iron ore train BNL-005 (train BNL), which had departed about 30 minutes earlier. Train BNL consisted of 3 locomotives and 238 empty cars; it was about 8600 feet in length and weighed approximately 6170 tons. On 11 January 2013, at approximately 0018, after passing the advance signal for south-east siding switch Mai, at Mile 123.9, train FCN collided with the tail end of train BNL at a speed of 26.5 mph. The latter was stopped on the main track at the home signal for south-east Mai while the train crew was in the process of clearing snow that prevented the remote operation of the switch providing access to the siding (Photo 1).

Photo 1. Train FCN-05 in collision with the tail end of train BNL-005 (source: QNS&L)

Train FCN-05 in collision with the tail end of train BNL-005 (source: QNS&L)

Click image to enlarge.

The crew members of train FCN‑05 sustained minor injuries. Just prior to the collision, the engineer instructor got up from his seat and moved next to the engineer trainee. The engineer instructor braced himself behind the engineer trainee’s seat, while the latter bent forward in his seat awaiting the impending collision. The cabin of the lead locomotive on train FCN (locomotive 320) was destroyed by the impact. The second locomotive on train FCN (locomotive 318) and 8 cars from train BNL derailed and sustained varying degrees of damage. Approximately 40 feet of track was damaged.

At the time of the accident, the skies were clear and the temperature was –11°C (–18°C with the wind chill).

Site examination

The first locomotive on train FCN came to rest at Mile 124.2, at the exit of a 3° left-hand curve. This curve, located right after signal 1239, is preceded by a 2°30′ right-hand curve. The cabin on this locomotive was destroyed. Two truck side frames from derailed cars on train BNL were projected into the cabin. The rear truck on the second locomotive of train FCN derailed.

The last 6 cars of train BNL lifted off the rails following impact and descended the embankment. The other 2 derailed cars remained on the track bed.

Track information

The Wacouna Subdivision consists of a single main track linking Sept-Îles (Mile 8.9) to Emeril Junction (Mile 225.30). Train movements are governed by the Centralized Traffic Control system (CTC) authorized by the CROR, and supervised by a Rail Traffic Controller (RTC) located in Sept‑Îles.

It is a Class 3 track according to the Transport Canada‑approved Railway Track Safety Rules. Maximum allowable speed is 40 mph. Traffic consists of 9 trains per day (ore, freight, and passenger), for an annual tonnage of close to 28 million gross tons.

The track was in good condition. It consisted of 136-pound continuous welded rail. The rails were laid on 18-inch double shoulder tie plates in curved track and on 14-inch double shoulder tie plates in tangent portions. The rails were fastened to the ties with 6‑spikes. There were approximately 3250 wooden ties per mile of track. Ties were box‑anchored every second tie. The ballast was about 12 inches thick, with shoulders between 12 and 16 inches. It was mainly made up of 1.5- to 3-inch diameter crushed rock.

Recorded information

Figure 2. Track profile, signal layout and trains in the vicinity of Mai

Track profile, signal layout and trains in the vicinity of Mai

Click image to enlarge.

In the course of the evening, train FCN met 2 other trains and received some 20 alarms from the proximity detection device (PDD).Footnote2 Table 1 shows the sequence of events and the actions taken by the crew.

Table 1. Sequence of events that led to the collision
Time Event
2322:47 Near the end of his shift, the RTC calls train BNL to advise that it would have to apply CROR Rule 564 (a pass stop authority) at signal 1257,Footnote3 south-east Mai, since the switch was clogged with snow. The engineer would need to clear the snow off the switch and take the siding.
2323:18 RTC calls train FCN to advise that the block governed by signal 1257 south-east Mai should already be clear upon its arrival, but that he can’t give him the block governed by signal 1283 north-east Mai, because the switch is clogged with snow. RTC also advises engineer to set off a locomotive for another train yarded at Mai (train PA). RTC and engineer instructor conclude that train FCN will reach Mai Station at the expected time to set off the locomotive for the other train.
2330 RTC shift change.
0001:24 At Mile 115.0, crew of train FCN acknowledges receipt of type 1 alarm from locomotive 424 on train BNL indicating latter’s position less than 8 miles away.
0009:32 Crew of train BNL stops short of signal 1257 to clear snow from switch (signal 1257 indicates stop).
0010:29 At Mile 120.6, locomotive 320 on train FCN receives type 1 alarm warning that locomotive on train PA, yarded at Mai, is less than 8 miles away. Train FCN is to set off locomotive for this train. Crew acknowledges receipt of alarm.
0010:32 At Mile 120.7, locomotive 320 receives type 2 alarm warning that locomotive 424 on train BNL is less than 5 miles away. Crew acknowledges receipt of alarm.
Position of locomotive 424 (train BNL): Mile 125.6 (stopped).
0011:58 At Mile 121.2, throttle is engaged; train travelling at 17.2 mph.
0013:57 Train FCN passes signal 1219 indicating Clear to StopFootnote4. Train is travelling at a speed of 30.3 mph.
Position of locomotive 424 (train BNL): Mile 125.62 (speed of 1.7 mph in order to enter the siding).
0015:33 At Mile 122.9, locomotive 320 receives type 3 alarm warning that locomotive 424 on train BNL is less than 3 miles away. Crew acknowledges receipt of alarm without reading displayed data. Train speed is 35.9 mph.
Position of locomotive 424 (train BNL): Mile 125.63 (stopped).
0015:51 Crew of train FCN disengages throttle; speed is 38.0 mph and train is located at Mile 123.1.
0016:59 At Mile 123.8, approximately 750 feet from signal 1239 displaying a Restricting Signal indicationFootnote5, a minimum brake application was made with the train travelling at 40 mph.
0017:13 At signal 1239, train speed is 40 mph and dynamic braking is applied.
0017:22 At Mile 124.1, train speed is 37.9 mph and there is a full service brake application.
0017:27 At Mile 124.1, train FCN’s emergency brakes are applied while train is travelling at 36.8 mph.
0017:40 At Mile 124.2, train FCN collides with rear end of train BNL at a speed of 26.5 mph.
0017:49 Train FCN comes to a stop at Mile 124.21.

An analysis was done of the data from the PDD on locomotive 320 compiled by the central server. 10 type 1 alarms and 1 type 2 alarm sounded between locomotive 320 and locomotive 424. However, the type 3 alarm was not recorded since the PDD on one of the locomotives only transmitted every 10 or 12 seconds. The event recorder on locomotive 318 recorded all the alarms and indicated they had been acknowledged.

According to the event recorder, it took approximately 8 seconds from the service and emergency brake application for deceleration to become pronounced and constant. Taking into account the train’s deceleration curve and a reaction time of 1 second on the part of a locomotive engineer, the braking distance required to come to a complete stop for a train similar to the occurrence train would be 1500 feet , whereas the distance required to lower the speed to 15 mph would be 1300 feet.

QNS&L training program

The program established by QNS&L for training locomotive engineers includes theoretical courses and a practical phase. During the practical phase, the engineer trainee is accompanied by an engineer instructor and must meet specific objectives at designated stages (Table 2). After each stage, the trainee is evaluated by a manager. In addition, to meet the stipulations for one‑person crew operations, QNS&L is required by Transport Canada to have each locomotive engineer re‑evaluated by a manager during a trip at least every 8 months.

Table 2. Learning objectives for engineer trainees, QNS&L railway
Stage Learning objectives
36-hour theory course
  • QNS&L induction
300 hours of practice
  • Become familiar with the location and mileage of each station as well as with permanent speed restrictions
  • Be able to locate the advance signal for each station
160-hour theory course
  • Understand basic locomotive concepts, General Operating Instructions (GOI), Timetable No. 21 and car switching (these hours do not count toward acquired experience)
300 hours of practice
  • Operate a train from Carol Lake (Newfoundland-and-Labrador) to Mai (Quebec) without the benefit of notes or the track profile
  • Be able to recite procedures to the instructor (trainee and instructor switch places)
300 hours of practice
  • Operate a train from Mai to Sept‑Îles without the benefit of notes or the track profile
100 hours of practice
  • Prepare for the qualification trip (instructor takes up position in the second locomotive for a minimum of 2 trips)

CROR training courses are not offered on a regular basis. Among the 31 employees hired by QNS&L between February and July 2012, 25 received CROR training within 3 months of joining the company. The other trainees, some of whom had been hired in May 2012 (including the trainee involved in this occurrence), still had not received that training at the time of the accident, i.e. more than 7 months later.

In addition, the learning objectives of the engineer trainees and the re‑evaluations of the locomotive engineers are not completed on time. Sixteen trainees had exceeded 300 hours of practice; of this number, only 9 had been evaluated by a manager. Of the 54 qualified locomotive engineers, 27 had not been re‑evaluated by a manager within an 8‑month period, and some of them were serving as instructors for trainees.

The engineer trainee was hired in May 2012 and paired with his instructor in July 2012. This was the first time the engineer had served as an instructor. No training is given to engineers before they become instructors. Other railway companies have instructor training programs that focus on reinforcing the mentoring skills of engineer instructors. Other aspects are also covered, such as communication, listening, observation and feedback.

Proximity detection device

The PDD warns the operator about the presence of any other rail vehicle within a specified distance. It is equipped with a GPS that can determine the position, direction and speed of any rail vehicle fitted with the device.

A signal containing the movement parameters of rail vehicles, such as identification, position, relative distance and speed, is transmitted by radio every 10 or 12 seconds, with the information displayed on the screens of other vehicles in the area (see Figure 3).

Figure 3. Standard screen for a proximity detection device (source: QNS&L)

Standard screen for a proximity detection device (source: QNS&L)

Click image to enlarge.

The PDD displays the distance between rail vehicles along with the other positions received. This distance calculation does not take into account the length of a train and only provides the distance between vehicles that have an onboard PDD. The distance must be interpreted by the engineer. When the separation between locomotives is less than 8, 5 or 3 miles, a visual warning indicating the alarm level (1, 2 or 3) is displayed on the screen and an audible warning is sounded (identical for all 3 alarm levels). To acknowledge receipt of type 1 and 2 alarms, the engineer must press the button on the crew alertness device located near the PDD screen or click on the “REARMER” button on the PDD screen itself. For type 3 alarms, the engineer must first press the button on the crew alertness device within 10 seconds of the alarm, and then click on the “REARMER” button in the next 5 seconds. If an engineer fails to acknowledge receipt of a type 2 or 3 alarm within 10 seconds, the system triggers automatic braking of the rail vehicle.

Representatives from the TSB and QNS&L examined the PDD (TSB Laboratory report LP 013/2013) and determined that the device performed per specifications.

Following Signal Indications

Following the investigation into the collision between 2 Canadian Pacific Railway (CPR) trains in 1998, near Notch Hill, British Columbia (TSB Investigation Report R98V0148), the Board determined that the backup safety defences for signal indications were inadequate and recommended that:

The Department of Transport and the railway industry implement additional backup safety defences to ensure that signal indications are consistently recognized and followed by crew members.

R00-04, issued February 2011

Action to date on the deficiency has resulted in procedural improvements implemented by CPR with its crew resource management practices. While there has been some safety benefit, administrative or procedural defences are not always adequate to protect against an operating crew’s misinterpreting or misperceiving wayside signal indications. TC and the railways are exploring the potential for current locomotive fleet computer systems to include signal recognition and air brake control capabilities. However, to date, there has been no formal strategy developed to adapt either emerging technology or existing on-board computer systems to provide fail-safe physical train control defences. Therefore the Board reassessed the response to Recommendation R00‑04 to remain “Satisfactory In Part”.

Given that the risk of a serious collision or derailment remains if rail signals are not consistently recognized and followed, the TSB included this deficiency on its 2012 Watchlist. The TSB has indicated that, since 2002, there has been an average of 11 occurrences per year in which a signal indication was misidentified, misinterpreted or not immediately recognized, thereby contributing to the occurrence. If signal indications are not followed, the CTC system cannot ensure that trains on the same line are separated appropriately. CTC does not provide any warning that a train may be passing beyond a restricted location, nor does it provide automatic means to slow or stop a train before it passes a stop signal or other points of restriction. The level of safety afforded by wayside signal systems has not improved significantly beyond their original design, which dates back over 100 years.

To add CTC safety measures, railways have adopted various other defence mechanisms to help prevent accidents. However, these defences are inadequate in situations where the train crew misinterprets or misperceives a signal indication or does not apply, or misapplies, an operating rule.

Following another accident resulting from a signal being misperceived or misinterpreted, which occurred in AldershotFootnote6, Ontario in February 2012, the Board recommended that:

The Department of Transport require major Canadian passenger and freight railways to implement physical fail‑safe train controls, beginning with Canada’s high-speed rail corridors.

R13-01, issued June 2013

Locomotive crashworthiness

The assessment of the crashworthiness of locomotive 320 showed that the sheeting on the cab of locomotive 320 was much thinner (0.13 inch) than the thickness specified in the existing rules (0.25 inch). The locomotive was not fitted with either collision posts, which are designed to reduce cabin deformation in frontal collisions, or corner posts, which serve to reinforce the cab’s structure in the event of a collision or rollover. Nor was it equipped with anti-climbers, which are designed to prevent colliding objects from travelling up over the frame and striking the cab.

When locomotive 320 was built in the ‘70s, the regulations then in effect in Canada did not contain any specific requirements relating to locomotive cab crashworthiness. The Railway Locomotive Inspection and Safety Rules approved by Transport Canada went into effect in 1997. These rules contain requirements pertaining to crashworthiness, but only for new locomotives. In view of the fact that over 90% of main line locomotives were built prior to the establishment of the current crashworthiness standards, the Board, in its investigation of the accident that occurred at Aldershot in 2012, recommended that:

The Department of Transport require that crashworthiness standards for new locomotives also apply to rebuilt passenger and freight locomotives.

R13-03, issued June 2013

TSB Laboratory reports

The following TSB Laboratory reports were completed:

  • LP 012/2013 – Crashworthiness Analysis, Freight Train, FCN-05
  • LP 013/2013 – Proximity Detection Device System Analysis, Freight Train, FCN-05

These reports are available from the TSB upon request.

Analysis

No track or equipment defects were considered contributory to the accident. The members of the crew were well rested. Therefore, the analysis will focus on the operation of the train, the training program and the limitations of the PDD.

Accident

The train crew, having received a ‘Clear to Stop’ indication at signal 1219, did not establish a speed enabling it to stop at signal 1239. What’s more, with a Restricting indication, the crew did not reduce speed in compliance with this indication. Indeed, the train passed Signal 1219 at a speed of 30 mph and its speed continued to fluctuate. At Mile 123.1, train FCN’s speed was 38 mph and continued to increase until it reached 40 mph approximately 750 feet from signal 1239, which displayed a Restricting Signal indication. When signal 1239 became visible, a minimum brake application was made, followed some 20 seconds later by a full automatic brake application to further slow the train and conform to the signal indication. However, owing to the inertia of the braking system, the speed decreased only slightly and the train passed signal 1239, displaying a Restricting Signal, at a speed of 40 mph. When the rear end of train BNL came into view, the emergency brakes were applied, but because the train’s speed was still too high, train FCN could not stop in time and collided with the tail end of train BNL, which was stationary.

Non-compliance with restricting indication at signal 1239

Slightly less than 1 hour before the collision, a conversation with the RTC might have led the crew to understand that signal 1257, south‑east Mai, would be clear when train FCN arrived there and that it would reach Mai Station at the expected time to transfer a locomotive to train PA. Previous TSB investigation reports (R10Q0011, R12T0038) have established that information provided in advance to train crews leads to mental models that can influence subsequent actions. It is difficult to alter a mental model once developed. Given the conversation with the RTC a little less than 1 hour before the collision, and despite the type 3 alarm, the crew continued to believe that train BNL would be in the siding at Mai Station and that signal 1239 would not display a restrictive indication.

Wayside signals provide a physical signal installation combined with an administrative requirement to follow the signal indication. This defence relies on the train crew to observe the signal, recognize the intent of the signal, and take appropriate action. Operating rules and company GOI require that all signals be identified and announced within the cab and that some signals be announced over the railway radio system. When an engineer is alone onboard a train, he must announce all signals over the radio system. Those defences, while of value, are inadequate in situations where the train crew misperceives, misinterprets or does not follow a signal indication. For more than a decade, the Board has had an outstanding recommendation calling for additional defences in signalled territory to ensure that signal indications are consistently recognized and followed. In the absence of additional physical fail‑safe train controls in signalled territory, the existing defences proved inadequate to prevent the collision.

Sightline distance and braking distance with respect to signal 1239

Because signal 1219 displayed a ‘Clear to Stop’ indication, the crew needed to be sure it could stop the train at the next signal (signal 1239). To do so, a reduction in speed was required even before signal 1239 came into view as the sightline for this signal was only 750 feet. As a result of their conversation with the RTC, the train crew anticipated a more permissive indication and therefore maintained a speed of approximately 38 mph, which is below the authorized maximum speed in this area. However, at such a speed, the braking distance before coming to a complete stop would be 1500 feet and the distance required to reduce speed would be at least 1300 feet, even if the emergency brakes were applied. Considering the sightline distance to signal 1239, it would be impossible for a train traveling at the permitted speed to follow the signal indication once it became visible, which increases the risk of collision.

The engineer instructor did not intervene to have the trainee reduce speed even before signal 1239 came into view. Once the signal became visible, even though the engineer instructor intervened to apply the emergency brakes, it was too late. The engineer instructor’s delayed intervention may be attributable to the fact that he was less vigilant because he trusted the trainee, having been paired with him for approximately 6 months, and because he himself did not expect signal 1239 to display a Restricting indication.

Training program for locomotive engineer trainees

Although signal 1239 was seen by the engineer trainee, the latter responded with a minimum brake application whereas he should have quickly and significantly reduced his speed to comply with the signal indication. The engineer trainee had not yet received CROR training, therefore he had limited signal experience. As a result, he did not have a complete grasp of the actions required with respect to a Restricting indication. QNS&L’s training program for locomotive engineer trainees does make any reference to CROR qualification even though an engineer trainee could be operating a train under an instructor’s supervision, as soon as his second trip.

The fact that a large number of new locomotive engineers were hired in 2012 caused delays in required signal training and certification, which had not been completed for some trainees after 7 months. Although this length of time exceeded usual training timeframes, the fact remains that engineer trainees were authorized to operate a locomotive without completing their basic training and certification requirements. To confirm that trainees fully understand the measures necessary to address various signal indications, they must have completed CROR training, which includes signal rules. Moreover, to ensure that the necessary measures are taken in a timely fashion before arriving at a signal and in reaction to a signal, the proper procedures must be overlearned; that is, they must become, through repetitive practice, an automatic response that will allow the process to be implemented more easily. In the absence of adequate CROR training and overlearned procedures, engineer trainees lack sufficient means to operate trains safely.

The engineer was serving as an instructor for the first time without ever having received training specifically intended for this type of role. Contrary to other railway companies, QNS&L does not have an established program for training engineers to become instructors. These training programs focus on reinforcing the mentoring skills of engineer instructors, but also cover aspects such as communication, listening, observation and feedback. Locomotive engineers, even experienced ones, are not necessarily able to effectively teach their skills to engineer trainees. Without an instructor training program, it is difficult to ensure that knowledge and best practices are properly transferred to engineer trainees so they can operate trains safely.

According to the company’s policies and to ensure compliance with Transport Canada requirements, each locomotive engineer should be accompanied by a manager on 1 trip at least every 8 months.  However, only half of the qualified locomotive engineers had been accompanied by a manager within the specified timeframe. The absence of any regular re‑evaluation of engineers’ skills means unsafe engineer practices that may increase the risk of accident cannot be identified.

Limitations of the proximity detection device

The audible warnings sounded by the PDD force the operator to refocus his visual concentration on the screen. The operator acknowledges each alarm by clicking on the “REARMER” button located at the bottom left of the screen. However, this does not prompt the operator to take note of such critical parameters such as separation distance, and the speed and location of the nearest rail vehicle. A visual warning signal associated to these parameters would draw the operator’s attention to this critical information. Moreover, the distance given for a train preceding another train in the same direction indicates the distance between the 2 locomotives and not the actual separation distance between the 2 trains. The operator must extrapolate the distance from the identification code of the trains to determine the actual distance. Therefore, when the type 3 alarm sounded, the actual separation between the 2 trains was approximately 1 mile whereas the screen indicated 3 miles. Given that the PDD screen does not show the actual separation distance between 2 trains moving in the same direction, the operator did not fully realize that a collision was imminent.

To acknowledge the type 3 alarm, the engineer trainee had to press the push-button on the crew alertness device and then click on the “REARMER” button on the PDD screen; otherwise the system would have triggered automatic braking of the train. However, since the engineer trainee was already aware of the presence of train BNL even before the alarm was generated, there was an automatic response involved in acknowledging the alarm without reading the data displayed higher up. Among other details, the data on the PDD screen indicated a speed of 0 mph along with the location of the lead locomotive on train BNL. This information was sufficient for the trainee to take steps to reduce speed. Since the locomotive trainee acknowledged the type 3 alarm without reading the data concerning train BNL, he maintained a high speed and therefore was unable to stop the train in time.

Locomotive crashworthiness

More robust cab sheeting, along with the presence of collision posts, corner posts and anti‑climbers, would have minimized damage to the cab and afforded more protection for the crew. The absence of regulations requiring improvements in crashworthiness for locomotives built before 1997 increases the risk of injury for crew members and the risk of damage being sustained by such locomotives during an accident.

Findings

Findings as to causes and contributing factors

  1. Train FCN, having passed signal 1239, which displayed a Restricting indication, at a speed of 40 mph, was unable to stop in time despite an emergency brake application, and collided with the rear end of train BNL, which was stationary.
  2. Given the conversation with the RTC a little less than 1 hour before the collision, and despite the type 3 alarm, the crew continued to believe that train BNL would be in the siding at Mai Station and that signal 1239 would not display a restrictive indication.
  3. Because the engineer instructor did not expect Signal 1239 to display a Restricting indication and because he trusted the trainee, he did not intervene to control the speed on approaching signal 1239.
  4. The engineer trainee had not yet received Canadian Railway Operating Rules (CROR) training; therefore he had limited signal experience. As a result, he did not have a complete grasp of the measures required with respect to a Restricting indication.
  5. Given that the proximity detection device (PDD) screen does not show the actual separation distance between 2 trains moving in the same direction, the operator did not fully realize that a collision was imminent.
  6. Since the locomotive trainee acknowledged the type 3 alarm without reading the data concerning train BNL, he maintained a high speed and was therefore unable to stop the train in time.

Findings as to Risk

  1. In the absence of additional physical fail-safe train controls in signalled territory, the existing defences proved inadequate to prevent the collision.
  2. Considering the sightline distance to signal 1239, it would be impossible for a train, traveling at the permitted speed, to follow the signal indication once it became visible, thereby increasing the risk of collision.
  3. In the absence of adequate CROR training and overlearned procedures, engineer trainees lack sufficient means to operate trains safely, which increases the risk of accident.
  4. Without an instructor training program, it is difficult to ensure that knowledge and good practices are properly transferred to engineer trainees so they can operate trains safely.
  5. The absence of any regular re-evaluation of engineers’ skills means that unsafe engineer practices that may increase the risk of accident cannot be identified.
  6. The absence of regulations requiring improvements in crashworthiness for locomotives built before 1997 increases the risk of injury for crew members and the risk of damage being sustained by such locomotives during an accident.

Safety action

Safety action taken

Transportation Safety Board of Canada

On 16 January 2013, the TSB issued Rail Safety Advisory Letter 02/13 to Transport Canada regarding the importance of comprehensive training for safe train operations. The TSB suggested that Transport Canada review the training provided to locomotive engineer trainees at QNS&L given the determination that the engineer trainee who operated the accident train had not received formal CROR training and had not completed his practical training phase.

Transport Canada

On 22 February 2013, Transport Canada issued Notice of Danger 4581 to QNS&L under Part II of the Canada Labour Code citing the risk of operating a locomotive without CROR qualification. On the same date, Transport Canada issued Notice of Danger 4582 to QNS&L, citing the risk of having an engineer trainee operate a locomotive on his own.

In response to TSB Rail Safety Advisory Letter 02/13, Transport Canada indicated on 5 March 2013 that its Quebec Regional Office had begun an in-depth review of the training and supervision of QNS&L employees.

Within the scope of its risk‑based business planning process for 2013-2014, Transport Canada has increased supervision of QNS&L operations. Also, in the summer of 2013, Transport Canada audited QNS&L’s safety management system (SMS) with a focus on the training programs for locomotive engineers and engineer instructors, supervision of engineers who operate trains, supervision of engineer trainees, and the corrective actions implemented in the wake of this accident.

Footnotes

Footnote 1
All times are Eastern Standard Time (Coordinated Universal Time minus 5 hours).

Return to footnote1referrer

Footnote 2
See the section on the proximity detection device in this report.

Return to footnote2referrer

Footnote 3
The names of the signals, such as signal 1257, identify their location (Mile 125.7).

Return to footnote3referrer

Footnote 4
Proceed, preparing to stop at next signal.

Return to footnote4referrer

Footnote 5
“Proceed at RESTRICTED speed.” RESTRICTED speed: “A speed that will permit stopping within one-half the range of vision of equipment, also prepared to stop short of a switch not properly lined and in no case exceeding SLOW speed. When moving at restricted speed, be on the lookout for broken rails …” SLOW speed: “A speed not exceeding fifteen (15) miles per hour.” Source: Transport Canada, Canadian Rail Operating Rules, Definitions, available at: https://www.tc.gc.ca/eng/railsafety/rules-tco167-160.htm (last accessed 18 March 2014)

Return to footnote5referrer

Footnote 6
TSB Railway Investigation Report R12T0038

Enhanced by Zemanta

To vote or not to vote? Aboriginal people in northern Quebec to decide

Source

614af_Screen_Shot_2013_08_05_at_8.26.12_PM

To vote or not to vote — that is the question for many Quebecers caught up in the April 7 general election.

Perhaps the least excited electors are the aboriginal people of the North, even though this election could ultimately have enormous impact on them and their communities.

Voter turnout in northern Quebec is traditionally the lowest in the province. Just 41.6 percent of eligible voters in the riding of Ungava cast ballots in 2012, for example.

I am an Innu from Lac Saint-Jean area of Quebec and I live in Montreal. I have a voice. To vote is a privilege, they say.

There are so many things to consider for aboriginal people in cities and in Northern communities. But the more I listen to the debates, read the analysis in the media and look into the party platforms, the less I see of us in their plans.

Participation

The issue of low turnout among aboriginal voters was examined in a study done for Elections Canada in 2011. The report cited many reasons but two in particular jumped out at me.

One was the friction between the drive for aboriginal self-determination and the idea of joining a federal or provincial process of elections.

The other was the notion of social exclusion, of alienation.

As the report states, existing institutions are seen as defending the interests of non-aboriginal people only.

The Canadian government and its ministries are perceived as tools of a systemic discrimination through policies. I’ve heard from many Aboriginal leaders that they feel the same is also true of provincial governments.

Maybe the cynical attitude among some Aboriginal voters has to do more with the selective historical amnesia of Canadians and Quebecers regarding their relationship with First Peoples.

It could also be due to the fact that First Peoples’ political power does not reside in the electoral process. It is rooted elsewhere: in the Canadian Constitution, the Supreme Court, lobby groups and, sometimes, barricades.

Natives and Inuit represent fewer than 1 percent of Quebec’s population of 8 million citizens.

Judging priorities

But democracy needs to be more than a majority deciding for a minority when it comes to First Peoples.

As author James Bovard said: “Democracy must be something more than two wolves and a sheep voting on what to have for dinner.”

Election after election, First Peoples’ priorities fall between the cracks.

Only two parties out of the four main ones even mention native people in their platform: Parti Québécois and Québec Solidaire.

Both are separatist parties arguing over a territory that many say is not wholly theirs, in light of the Royal Proclamation of 1763, restated by the Canadian Constitution in 1982.

Quebec Solidaire is unlikely to win this election. The Parti Quebecois states simply it will pursue discussions with First Nations, among others. It also want to put forward a Northern Plan (Le Nord pour tous), which is aimed at economic development and natural resources.

For many Inuit, the main concerns are housing, social services and health issues in the North. But these issues are simply not mentioned.

The Liberals and Coalition Avenir Quebec do not even mention aboriginal people directly in their platforms.

But they have development plans in mind for forestry and mining; at the end of the day, they might talk to the people living in the land.

That would be easier going, of course, with nations that signed treaties (Crees and Inuit), but those without might again have to wait.

Quebec independence

The one subject that really engages aboriginal voters is the idea of Quebec separation.

Ghislain Picard, vice-chief at the Assembly of First Nations of Quebec and Labrador, came out early in the campaign to remind the parties that aboriginal people will decide their own place in Canada.

In a letter published by Le Devoir, Picard wrote that, in 1995, the Crees and the Innu held their own referendums.

A total of 77 percent of eligible voters participated, a pretty impressive turnout.

In the final count, 95 percent voted to stay within Canada, a total of 5 percent said “yes” to separation, or maybe just spoiled their ballots.

South of Montreal, the Mohawks are also refusing to be part of a separate Quebec. Some are arguing that Quebec has no right over their land.

Nonetheless, there are several native people in Quebec who are involved in a separatist movement.

Maïte Saganash, daughter of MP Roméo Saganash (NDP), a Cree from Waswanipi in Quebec, is a member of the Parti Québécois; as is former Abenaki member of the National Assembly from Abitibi, Alexi Wawanoloath. Bernard Cleary, an Innu from Mashteuiatsh, was with the Bloc Québécois.

Some of the Natives who are for separation argue that a democratic system with proportional representation would be best.

They envision an assembly of elected representatives and a northern assembly with native and non-native representation.

They also point out that Canada created the 1876 Indian Act, which put in place “Indian reserves” and made them dependent on the state.

Looking ahead

In Quebec, only Inuit, Crees and Naskapis are no longer under the Indian Act.

The vast majority of aboriginal people still are.

But to emerge from that reserve system and from a history of colonization, First Peoples need an economy, they need education, houses, health services and much more.

To get out of a system of dependency, they also need a land base for their people. They need territory.

The idea of proportional representation can seem attractive, but it is complicated with treaties, self-determination, self-government and aboriginal rights.

There is no simple answer.

To participate in these elections we have to think about our personal values, our extended family, our friends – both native and non-native.

Some of us may choose not to vote because we feel our concerns are not seriously dealt with in any of the party plans.

That would be a loss for democracy because who ever wins the election might not find the need to properly serve Quebec’s First People.

Enhanced by Zemanta

David Suzuki visits tiny Cree community to explore big ideas: New Eeyou Istchee-James Bay government is hoping tour will inspire youth

Source

Abel Bosum (left), youth grand chief Joshua Iserhoff (centre), and David Suzuki (right). (April Pachanos)

Abel Bosum (left), youth grand chief Joshua Iserhoff (centre), and David Suzuki (right). (April Pachanos)

Environmental activist David Suzuki is visiting the tiny Cree community of Nemaska, population 600, to explore some big ideas.

Nemaska is the smallest Cree village in the James Bay region of northern Quebec. It’s about 5 hours north-west of Chibougamau.

Suzuki’s appearance is part of an event, Cree Round Table on Capacity Building, that is touring remote communities. It’s an initiative to teach young people about the Cree Nation’s history, and inspire them to get involved — in the public realm, the resource sector, and more.

“What you’re teaching here, I believe, the history of your people is the story of your relationship with the land and the way that you want to live on that land,” said Suzuki in his speech to the community.

Suzuki is one of many guest speakers who will be flown in to Eeyou Istchee over the coming months as the capacity building tour visits each Cree community. His speech followed presentations about job opportunities in the booming mining sector in northern Quebec.

With a new regional government, control over services such as education, health, and policing, and three mines, come thousands of jobs.

‘We have a large youth population…If we don’t get them in, particularly in resource development, companies will import people from the south and that could leave the Crees on the sideline.’- Abel Bosum, a Cree negotiator

Some of those jobs require French proficiency, a degree, or specialized training. But with only 15% of Crees going on to post-secondary education, many aren’t qualified to take those jobs.

So the Cree government is pulling out all the stops, spending tens of thousands of dollars on the capacity building tour.

“We have a large youth population and that’s a big labour force,” says Abel Bosum, a Cree negotiator and one of the driving forces behind the capacity building tour. “If we don’t get them in, particularly in resource development, companies will import people from the South and that could leave the Crees on the sideline.”

“Also I think we need to change the mentality. Historically Crees have been opposed to hydroelectric development so young people have a hard time seeing themselves working for Hydro.”

Some of the round tablepresentations offer a crash course on the 75 agreements the Quebec Crees have signed, starting with the James Bay and Northern Quebec Agreement, known as the first modern treaty, in 1975.

Ashley Iserhoff worked for eight years as the Deputy Grand Chief of the Quebec Crees. Now he’s speaking to students on this tour, encouraging them to follow in his footsteps.

“You as students are going to take over the leadership. You’re going to be responsible to ensure that these agreements are implemented, to improve on what we’ve done in the past.”

‘I believe it’s no accident today that the major battles going on across Canada are being led by or involve First Nations.’- David Suzuki

Iserhoff said the progress the Crees have made over the past 40 years is impressive, but many young people take it for granted.

“In the 70s, when the government announced a major hydroelectric project, you know we weren’t even considered at all. They didn’t even ask us.”

David Suzuki also addressed instances of First Nations in Canada fighting development on their territory.

“They’re coming into your territory, I see you have diamonds, and all kinds of stuff. The world wants that, the economy wants that, and that all exploits the planet and the world population to sell stuff.”

David SuzukiEnvironmentalist David Suzuki moderated a press conference prior to Neil Young’s final anti-oilsands concert. (CBC)

“I believe it’s no accident today that the major battles going on across Canada are being led by or involve First Nations,” he said.

“What are they telling us? They are telling us there are things more important than money. I don’t believe the corporations or government are hearing that message.”

Bosum says he feels there is no conflict between Suzuki’s message of resisting development, and the current push to get Cree youth into jobs in the energy, resource and mining sectors.

“The Cree have always been very strong on environmental issues. David Suzuki is a Canadian icon and we’re hoping young people will be inspired,” Bosum says.

“We’re just trying to give them all the options that they can consider.”

 

Enhanced by Zemanta

The spirit of Cain’s Quest: Mark Nui refuses to go home after snowmobile accident

Source

Mark Nui of Natuashish (Team 29) was forced out of Cain’s Quest after a snowmobile accident, which knocked him unconscious and broke his left foot. Despite his injuries, Nui will be traveling to Labrador City to see Cain’s Quest come to an end. © Derek Montague

Mark Nui of Natuashish (Team 29) was forced out of Cain’s Quest after a snowmobile accident, which knocked him unconscious and broke his left foot. Despite his injuries, Nui will be traveling to Labrador City to see Cain’s Quest come to an end. © Derek Montague

Sitting at a booth at Jungle Jim’s in Happy Valley-Goose Bay, Mark Nui won’t be left alone to enjoy his beverage. People, including many who are involved with Cain’s Quest, keep coming up to shake his hand and wish him well.

On March 5, Nui, who is a member of Natuashish (Team 29), was involved in a dramatic snowmobile accident near Makkovik, which forced him and his partner Joachim Nui out of Cain’s Quest.

“I’m disappointed in a way. I understand that safety has to come first, so I’m good with it,” said Nui, who remained in high spirits.

After leaving the Makkovik checkpoint on March 5, Natuashish was among the group of contending teams, and were looking to take a lead.

“I think I was second or third in Makkovik; again the boys (Team 00) were running ahead of me out of the checkpoint,” said Nui.

“I noticed just around the point, when I catch up with them … I was doing close to 100 kilometres (per hour) … ahead of me was a patch of ice or hard snow.”

After seeing the obstacle in front of him, Nui put on the brake, and the front end of his snowmobile hit one of the bumps. According to Nui, he was thrown 20 feet from his machine.

The crash knocked Nui out cold and broke his left foot. There’s also more than an hour of time that the Cain’s Quest racer can’t recall.

“The snowmobile started rolling and rolled on my chest. How I broke my foot, I don’t know. I was knocked out and I don’t remember anything for an hour and a half,” said Nui.

“I was told that I was walking around where the accident took place.”

The next thing Nui remembers, a nurse at the Makkovik clinic was treating him for his injuries. At this point, he had yet to realize the extent of his injuries, and had every intention of continuing the race.

“In the clinic, I was asked certain questions. I was asked if I should continue. Obviously, I said yes. I had not realized I had a broken foot at that time.”

“By that time, my partner Joachim had interjected and told me we’re not going.”

For Nui, who has now competed in six Cain’s Quests, this is the first time bowing out of a race, since his first attempt in 2008.

But rather than feeling blue about what could have been, Nui has decided to travel back to Labrador City, so he can take part in the closing ceremonies. Broken bones or not, it’s an event he wouldn’t miss for the world.

“I really enjoy taking part in the race but also the closing ceremonies,” said Nui.  “And I’ve been at it six races and I don’t like leaving it suddenly.”

Enhanced by Zemanta

Police make arrest in RCMP officer assault

Source

Labrador RCMP have taken a 25-year-old man into custody following an assault to an officer in Natuashish.

The officer was on patrol in the community on Thursday night and was assaulted after he responded to a disturbance.

Police said the officer came upon a fight between two men. One of the men, the accused, ran off.

The officer pursued the suspect on foot. While the officer was trying to arrest the man, he jumped on a snow machine and drove in the direction of the officer, knocking him over. The man then sped away.

The officer was treated and released at the local clinic for non-life threatening injuries.

After an active search in the community, police apprehended the suspect shortly before noon on Friday.

He is scheduled to appear in court in the afternoon.

The accused is charged with assault with a weapon, dangerous driving, driving while prohibited, and breach of an undertaking.

Enhanced by Zemanta

James Bay Cree Nation welcomes announcement of Quebec-wide hearings on the uranium industr

Source

Carte Uranium (2013-03-01) v6 450dpi

NEMASKA, EEYOU ISTCHEE, QC, March 3, 2014 /CNW/ – The James Bay Cree Nation welcomes the announcement made today by Quebec Environment Minister Yves-François Blanchet of the mandate granted to the Bureau d’audiences publiques sur l’environnement (BAPE) to conduct province-wide public hearings regarding the uranium sector in Quebec.

“This is a crucial first step in an important process,” said Grand Chief Dr. Mathew Coon Come. “A broad, independent and rigorous study of the uranium industry in Quebec is urgently required. We intend to participate fully in the BAPE process, to ensure that it meets these high standards. We are confident that when Quebecers learn and consider the true facts about uranium mining and uranium waste, they will join us in our permanent moratorium stand.”

“The Government of Quebec and the Cree Nation Government have committed to work closely together, both before and during the BAPE mandate, to ensure that the BAPE process regarding the uranium industry in Quebec proceeds in a manner that respects Cree treaty rights and the requirements of the James Bay and Northern Quebec Agreement,” Grand Chief Coon Come noted. “Uranium is an issue of grave concern for the Cree Nation, for our environment, our lands and our future generations.”

On August 8, 2012, the Cree Nation enacted a permanent moratorium on uranium exploration, mining, milling and waste emplacement in Eeyou Istchee. The Cree Nation’s opposition to uranium activities in their territory is based on the serious risks uranium poses to the environment and to human health. Uranium exploration and mining places a burden on future generations that the Cree Nation is not prepared to assume.

“We commend the Government for its decision to look more closely at the risks associated with uranium, as the community of Mistissini has already done” said Mistissini Chief Richard Shecapio. “Our position remains clear: there will be no uranium activities in our territory.”

Strateco Resources Inc.’s Matoush project, which is located near the Cree community of Mistissini, is the most advanced uranium project to date in the Cree territory of Eeyou Istchee and in Quebec. In November 2013, Minister Blanchet refused to issue a certificate of authorization to Strateco for an advanced uranium exploration project at the Matoush site. Strateco has commenced legal proceedings to challenge the Minister’s decision, and the Crees have joined this litigation as interveners.

Enhanced by Zemanta